List of publications
Last update: 7 January 2025
Title | Authors | Source |
Development of aluminum oxide slurries for additive manufacturing by Bayesian optimization | Schubert J., Friederich P., Burchard B., Zanger F. | Open Ceramics 20, 100705 |
Global Concept Explanations for Graphs by Contrastive Learning | Teufel J., Friederich P. | Communications in Computer and Information Science 2153 CCIS, pp. 184-208 |
JARVIS-Leaderboard: a large scale benchmark of materials design methods | Choudhary K., Wines D., Friederich P. et al. | npj Computational Materials 10(1), 93 |
Functional Material Systems Enabled by Automated Data Extraction and Machine Learning | Kalhor P., Jung N., Friederich P. et al. | Advanced Functional Materials 34(20), 2302630 |
Contextualized Policy Recovery: Modeling and Interpreting Medical Decisions with Adaptive Imitation Learning | Deuschel J., Ellington C.N., Friederich P. et al. | Proceedings of Machine Learning Research 235, pp. 10642-10660 |
Conditional Normalizing Flows for Active Learning of Coarse-Grained Molecular Representations | Schopmans H., Friederich P. | Proceedings of Machine Learning Research 235, pp. 43804-43827 |
Artificial design of organic emitters via a genetic algorithm enhanced by a deep neural network | Nigam A., Pollice R., Friederich P., Aspuru-Guzik A. | Chemical Science 15(7), pp. 2618-2639 |
EDITORIAL: Chemical Compound Space Exploration by Multiscale High-Throughput Screening and Machine Learning | Gryn’ova G., Bereau T., Friederich P. et al. | Journal of Chemical Information and Modeling 64(15), pp. 5737-5738 |
Materials Acceleration Platforms (MAPs): Accelerating Materials Research and Development to Meet Urgent Societal Challenges | Stier S.P., Kreisbeck C., Friederich P. et al. | Advanced Materials 36(45), 2407791 |
Substituting density functional theory in reaction barrier calculations for hydrogen atom transfer in proteins | Riedmiller K., Reiser P., Friederich P. et al. | Chemical Science 15(7), pp. 2518-2527 |
Actively learning costly reward functions for reinforcement learning | Eberhard A., Metni H., Friederich P. et al. | Machine Learning: Science and Technology 5(1), 015055 |
Connectivity optimized nested line graph networks for crystal structures | Ruff R., Reiser P., Stühmer J., Friederich P. | Digital Discovery 3(3), pp. 594-601 |
Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells | Wu J., Torresi L., Friederich P. et al. | Science (New York, N.Y.) 386(6727), pp. 1256-1264 |
Title | Authors | Source |
Modeling Charge Transport in Organic Semiconductors Using Neural Network Based Hamiltonians and Forces | Dohmen P.M., Krämer M., Friederich P. et al. | Journal of Chemical Theory and Computation 19(13), pp. 3825-3838 |
Accurate GW frontier orbital energies of 134 kilo molecules | Fediai A., Reiser P., Friederich P. et al. | Scientific Data 10(1), 581 |
Quantifying the Intrinsic Usefulness of Attributional Explanations for Graph Neural Networks with Artificial Simulatability Studies | Teufel J., Torresi L., Friederich P. | Communications in Computer and Information Science 1902 CCIS, pp. 361-381 |
MEGAN: Multi-explanation Graph Attention Network | Teufel J., Torresi L., Reiser P., Friederich P. | Communications in Computer and Information Science 1902 CCIS, pp. 338-360 |
Interpretable delta-learning of GW quasiparticle energies from GGA-DFT | Fediai A., Reiser P., Friederich P. et al. | Machine Learning: Science and Technology 4(3), 035045 |
Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approaches | Wu J., Zhang J., Friederich P. et al. | Journal of the American Chemical Society 145(30), pp. 16517-16525 |
What is missing in autonomous discovery: open challenges for the community | Maffettone P.M., Friederich P., Baird S.G. et al. | Digital Discovery 2(6), pp. 1644-1659 |
Navigating the unknown with AI: multiobjective Bayesian optimization of non-noble acidic OER catalysts | Jenewein K.J., Torresi L., Friederich P. et al. | Journal of Materials Chemistry A 12(5), pp. 3072-3083 |
High-Throughput Synthesis and Machine Learning Assisted Design of Photodegradable Hydrogels | Seifermann M., Reiser P., Friederich P., Levkin P.A. | Small Methods 7(9), 2300553 |
3DSC - a dataset of superconductors including crystal structures | Sommer T., Willa R., Schmalian J., Friederich P. | Scientific Data 10(1), 816 |
The Role of Experimental Noise in a Hybrid Classical-Molecular Computer to Solve Combinatorial Optimization Problems | Krasecki V.K., Sharma A., Friederich P. et al. | ACS Central Science 9(7), pp. 1453-1465 |
Synthesis and Characterization of High-Entropy CrMoNbTaVW Thin Films Using High-Throughput Methods | Schweidler S., Schopmans H., Friederich P. et al. | Advanced Engineering Materials 25(2), 2200870 |
Neural networks trained on synthetically generated crystals can extract structural information from ICSD powder X-ray diffractograms | Schopmans H., Reiser P., Friederich P. | Digital Discovery 2(5), pp. 1414-1424 |
Lattice Metamaterials with Mesoscale Motifs: Exploration of Property Charts by Bayesian Optimization | Kulagin R., Reiser P., Friederich P. et al. | Advanced Engineering Materials 25(13), 2300048 |
Design of Modified Polymer Membranes Using Machine Learning | Glass S., Schmidt M., Friederich P. et al. | ACS Applied Materials and Interfaces |
Title | Authors | Source |
Graph neural networks for materials science and chemistry | Reiser P., Neubert M., Friederich P. et al. | Communications Materials 3(1), 93 |
AN ACTIVE LEARNING APPROACH FOR THE PREDICTION OF HYDRODYNAMIC ROUGHNESS PROPERTIES | Yang J., Stroh A., Friederich P. et al. | 12th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2022 |
A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis | Gensch T., Dos Passos Gomes G., Friederich P. et al. | Journal of the American Chemical Society 144(3), pp. 1205-1217 |
Carbazole-substituted benzobisoxazoles: near-UV fluorescent emitters and ambipolar hosts for organic light-emitting diodes | Wheeler D.L., Fisher L., Friederich P. et al. | Journal of Materials Chemistry C 11(1), pp. 211-222 |
Updated Calibrated Model for the Prediction of Molecular Frontier Orbital Energies and Its Application to Boron Subphthalocyanines | Holst D.P., Friederich P., Aspuru-Guzik A., Bender T.P. | Journal of Chemical Information and Modeling 62(4), pp. 829-840 |
On scientific understanding with artificial intelligence | Krenn M., Pollice R., Friederich P. et al. | Nature Reviews Physics 4(12), pp. 761-769 |
Bottom-up oled development by virtual design: Systematic elimination of performance bottlenecks using a microscopic simulation approach | Neumann T., Symalla F., Friederich P. et al. | Digest of Technical Papers - SID International Symposium 53(1), pp. 322-325 |
Particle detection by means of neural networks and synthetic training data refinement in defocusing particle tracking velocimetry | Dreisbach M., Leister R., Friederich P. et al. | Measurement Science and Technology 33(12), 124001 |
MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning** | Luo Y., Bag S., Friederich P. et al. | Angewandte Chemie - International Edition 61(19), e202200242 |
SELFIES and the future of molecular string representations | Krenn M., Ai Q., Friederich P. et al. | Patterns 3(10), 100588 |
Title | Authors | Source |
Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations | Li J., Reiser P., Friederich P. et al. | Chemical Science 12(14), pp. 5302-5314 |
Organic molecules with inverted gaps between first excited singlet and triplet states and appreciable fluorescence rates | Pollice R., Friederich P., Lavigne C. et al. | Matter 4(5), pp. 1654-1682 |
Scientific intuition inspired by machine learning-generated hypotheses | Friederich P., Krenn M., Tamblyn I., Guzik A.A. | Machine Learning: Science and Technology 2(2), 025027 |
Neural message passing on high order paths | Flam-Shepherd D., Wu T.C., Friederich P., Aspuru-Guzik A. | Machine Learning: Science and Technology 2(4), 045009 |
High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines | Behboodi-Sadabad F., Li S., Friederich P. et al. | Materials Today Bio 10, 100108 |
Machine-learned potentials for next-generation matter simulations | Friederich P., Häse F., Proppe J., Aspuru-Guzik A. | Nature Materials 20(6), pp. 750-761 |
Graph neural networks in TensorFlow-Keras with RaggedTensor representation (kgcnn)[Formula presented] | Reiser P., Eberhard A., Friederich P. | Software Impacts 9, 100095 |
Phase–Property Diagrams for Multicomponent Oxide Systems toward Materials Libraries | Velasco L., Castillo J.S., Friederich P. et al. | Advanced Materials 33(43), 2102301 |
Coronene derivatives for transparent organic photovoltaics through inverse materials design | Sorli J.C., Friederich P., Sanchez-Lengeling B. et al. | Journal of Materials Chemistry C 9(4), pp. 1310-1317 |
De Novo Calculation of the Charge Carrier Mobility in Amorphous Small Molecule Organic Semiconductors | Kaiser S., Neumann T., Friederich P. et al. | Frontiers in Chemistry 9, 801589 |
Computing Charging and Polarization Energies of Small Organic Molecules Embedded into Amorphous Materials with Quantum Accuracy | Armleder J., Strunk T., Friederich P. et al. | Journal of Chemical Theory and Computation 17(6), pp. 3727-3738 |
Analyzing Dynamical Disorder for Charge Transport in Organic Semiconductors via Machine Learning | Reiser P., Konrad M., Friederich P. et al. | Journal of Chemical Theory and Computation 17(6), pp. 3750-3759 |
A molecular computing approach to solving optimization problems via programmable microdroplet arrays | Guo S.Y., Friederich P., Cao Y. et al. | Matter 4(4), pp. 1107-1124 |
Photochemical Aging of Levitated Aqueous Brown Carbon Droplets | Jones S.H., Friederich P., Donaldson D.J. | ACS Earth and Space Chemistry 5(4), pp. 749-754 |
Fast Generation of Machine Learning-Based Force Fields for Adsorption Energies | Bag S., Konrad M., Friederich P. et al. | Journal of Chemical Theory and Computation 17(11), pp. 7195-7202 |
Title | Authors | Source |
AUGMENTING GENETIC ALGORITHMS WITH DEEP NEURAL NETWORKS FOR EXPLORING THE CHEMICAL SPACE | Nigam A., Friederich P., Krenn M., Aspuru-Guzik A. | 8th International Conference on Learning Representations, ICLR 2020 |
Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation | Krenn M., Häse F., Friederich P. et al. | Machine Learning: Science and Technology 1(4), aba947 |
Multiscale Simulation of Photoluminescence Quenching in Phosphorescent OLED Materials | Symalla F., Heidrich S., Friederich P. et al. | Advanced Theory and Simulations 3(4), 1900222 |
From Absorption Spectra to Charge Transfer in Nanoaggregates of Oligomers with Machine Learning | Roch L.M., Saikin S.K., Friederich P. et al. | ACS Nano 14(6), pp. 6589-6598 |
Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex | Friederich P., Dos Passos Gomes G., De Bin R. et al. | Chemical Science 11(18), pp. 4584-4601 |
Optical and Electrical Measurements Reveal the Orientation Mechanism of Homoleptic Iridium-Carbene Complexes | Schmid M., Harms K., Friederich P. et al. | ACS Applied Materials and Interfaces 12(46), pp. 51709-51718 |
Designing and understanding light-harvesting devices with machine learning | Häse F., Roch L.M., Friederich P., Aspuru-Guzik A. | Nature Communications 11(1), 4587 |
Title | Authors | Source |
Concentration dependent energy levels shifts in donor-acceptor mixtures due to intermolecular electrostatic interaction | Bag S., Friederich P., Kondov I., Wenzel W. | Scientific Reports 9(1), 12424 |
Toward Design of Novel Materials for Organic Electronics | Friederich P., Fediai A., Kaiser S. et al. | Advanced Materials 31(26), 1808256 |
Host dependence of the electron affinity of molecular dopants | Li J., Duchemin I., Friederich P. et al. | Materials Horizons 6(1), pp. 107-114 |
Triplet exciton diffusion in metalorganic phosphorescent host-guest systems from first principles | De Vries X., Friederich P., Wenzel W. et al. | Physical Review B 99(20), 205201 |
Disorder compensation controls doping efficiency in organic semiconductors | Fediai A., Symalla F., Friederich P., Wenzel W. | Nature Communications 10(1), 4547 |
Design rules for high mobility xanthene-based hole transport materials | Tabor D.P., Chiykowski V.A., Friederich P. et al. | Chemical Science 10(36), pp. 8360-8366 |
Title | Authors | Source |
Enhanced etching of tin-doped indium oxide due to surface modification by hydrogen ion injection | Li H., Karahashi K., Friederich P. et al. | Japanese Journal of Applied Physics 57(6), 06JC05 |
Computer-Aided Optimization of Multilayer OLED Devices | Symalla F., Friederich P., Kaiser S. et al. | Digest of Technical Papers - SID International Symposium 49(1), pp. 340-342 |
Machine learning of correlated dihedral potentials for atomistic molecular force fields | Friederich P., Konrad M., Strunk T., Wenzel W. | Scientific Reports 8(1), 2559 |
Meltdown! Local Heating by Decaying Excited Host Positive Polarons Triggers Aggregation Quenching in Blue PhOLEDs | Setzer T., Friederich P., Meded V. et al. | ChemPhysChem 19(21), pp. 2961-2966 |
Built-In Potentials Induced by Molecular Order in Amorphous Organic Thin Films | Friederich P., Rodin V., Von Wrochem F., Wenzel W. | ACS Applied Materials and Interfaces 10(2), pp. 1881-1887 |
Full quantum treatment of charge dynamics in amorphous molecular semiconductors | De Vries X., Friederich P., Wenzel W. et al. | Physical Review B 97(7), 075203 |
Title | Authors | Source |
p-Doping of polystyrene polymers with attached functional side-groups from solution | Schneider T., Limberg F., Friederich P. et al. | Journal of Materials Chemistry C 5(3), pp. 770-776 |
Effects of hydrogen ion irradiation on zinc oxide etching | Li H., Karahashi K., Friederich P. et al. | Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 35(5), 05C303 |
Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility | Friederich P., Gómez V., Sprau C. et al. | Advanced Materials 29(43), 1703505 |
Sub-50 nm Channel Vertical Field-Effect Transistors using Conventional Ink-Jet Printing | Baby T.T., Rommel M., Friederich P. et al. | Advanced Materials 29(4), 1603858 |
Effects of energy correlations and superexchange on charge transport and exciton formation in amorphous molecular semiconductors: An ab initio study | Massé A., Friederich P., Symalla F. et al. | Physical Review B 95(11), 115204 |
Molecular Origin of the Anisotropic Dye Orientation in Emissive Layers of Organic Light Emitting Diodes | Friederich P., Coehoorn R., Wenzel W. | Chemistry of Materials 29(21), pp. 9528-9535 |
Title | Authors | Source |
Multiscale simulation of organic electronics via smart scheduling of quantum mechanics computations | Friederich P., Strunk T., Wenzel W., Kondov I. | Procedia Computer Science 80, pp. 1244-1254 |
Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule Solar Cells | Moench T., Friederich P., Holzmueller F. et al. | Advanced Energy Materials 6(4), 1501280 |
Superexchange Charge Transport in Loaded Metal Organic Frameworks | Neumann T., Liu J., Friederich P. et al. | ACS Nano 10(7), pp. 7085-7093 |
Molecular Origin of the Charge Carrier Mobility in Small Molecule Organic Semiconductors | Friederich P., Meded V., Poschlad A. et al. | Advanced Functional Materials 26(31), pp. 5757-5763 |
Ab initio charge-carrier mobility model for amorphous molecular semiconductors | Massé A., Friederich P., Symalla F. et al. | Physical Review B 93(19), 195209 |
Ultrarobust Thin-Film Devices from Self-Assembled Metal-Terpyridine Oligomers | Karipidou Z., Branchi B., Friederich P. et al. | Advanced Materials 28(18), pp. 3473-3480 |
Charge Transport by Superexchange in Molecular Host-Guest Systems | Symalla F., Friederich P., Massé A. et al. | Physical Review Letters 117(27), 276803 |
Ab initio modeling of steady-state and time-dependent charge transport in hole-only α -NPD devices | Liu F., Massé A., Friederich P. et al. | Applied Physics Letters 109(24), 243301 |
Title | Authors | Source |
QM/QM approach to model energy disorder in amorphous organic semiconductors | Friederich P., Meded V., Symalla F. et al. | Journal of Chemical Theory and Computation 11(2), pp. 560-567 |
A self-consistent first-principle based approach to model carrier mobility in organic materials | Meded V., Friederich P., Symalla F. et al. | AIP Conference Proceedings 1702, 090027 |
Experimental and theoretical study of phase separation in ZnPc:C60 blends | Mönch T., Sherkar T.S., Friederich P. et al. | Organic Electronics 27, 3277 |
Generalized effective-medium model for the carrier mobility in amorphous organic semiconductors | Rodin V., Symalla F., Friederich P. et al. | Physical Review B - Condensed Matter and Materials Physics 91(15), 155203 |
Charge carrier mobility and electronic properties of Al(Op)3: Impact of excimer formation | Magri A., Friederich P., Schäfer B. et al. | Beilstein Journal of Nanotechnology 6(1), pp. 1107-1115 |
Title | Authors | Source |
Ab initio treatment of disorder effects in amorphous organic materials: Toward parameter free materials simulation | Friederich P., Symalla F., Meded V. et al. | Journal of Chemical Theory and Computation 10(9), pp. 3720-3725 |