Artificial Intelligence for Materials Sciences
Welcome to the homepage of the AiMat (Artificial Intelligence for Materials Sciences) group at KIT in which we work on the development of AI and machine learning methods focusing on their application to materials science questions.
The research group headed by junior professor Pascal Friederich was established in 2020 and has been growing ever since. We are therefore always looking for talented students and researchers in computer or natural sciences to join our team!

Congratulations to Jonas Teufel for the Best Student Paper Award at the xAI World Conference 2023!
Jonas has given a talk entitled "MEGAN: Multi-Explanation Graph Attention Network" in which he presented the results of our recent homonymous arXiv preprint.

The GC-MAC Summer School 2023 will be held on 18-22 September at KIT. It will cover multiple aspects of materials acceleration platforms (MAPs) for energy materials, e.g. automated synthesis and characterization, integration of simulation methods in materials design, and ML methods for MAPs.
Website & Registration
In the winter term 2023/24 we offer the lecture "Basics of Artificial Intelligence" together with the related exercises, a seminar on "Critical topics in AI" as well as a proseminar on "Advanced topics in machine learning".
Check them now!
We are searching for talented and motivated young researchers with backgrounds in computer science or natural sciences to join the team! Currently available are two PhD projects and one postdoc position. Interested? Check out the job openings!
Job openings
Research
Our main research areas are
- Data-driven prediction of material properties and computational material design
- Accelerated and machine learning based material simulations on atomic scale
- Direct coupling of machine learning methods with simulations and experiments